
-..

i

-.. — .

TECHNICAL MEMORANDUM 1398

FORJMATION OF A VORTEX AT THE EDGE

OF A PLATE

~ By Leo Anton

~anslation of ‘Ausbildung eines Wirbels an der
Kante einer Platte ,“ Gtkkinger Dissertation,

Ingenieur-Archiv, VOL X, 1939.

Washington

March 1956 .mp--.s.: .- .,.:,. -
:. .:;.-,

--- ;--------- “--- b-”-.),.
“:----- . . . . . . ------

-,



.H

TECHLIBRARYKAFB,NM E

l!9Mli’lMllllllllll~
NATIONAL ADVISORY CCMMITTEE FOR AERONAUTIC 0144474

!mcmIClul 14m4mmmuM1398

FORMATION OF A VORTEX AT THE EDGE .“
.

OF A PLATIV -.

~ Leo Anton

1. INTRODUCTION

If a plate is moved from the state of rest trauversely to Its
width through a fluld at rest, a s~ll vortex forms at every edge at
the start of the motion; by continual added influx of new pSrts of the
fluld, that vortex becomes larger and sows Into the flow. In c43sethe
flow is perpendicular to @ plate, the position of the two vortices is

. synmetrfcal at the beginning of the motion of the fMid. fi a latir
stage of development it Is, as von K&&L has provad, Un&table. Then
new vortices originate alternately at the upper and lower end of the

d plate which grOLQ themselves behind the plate in a certain manner (von
K&&n’s vortex street).

In what follows, we shall treat the Initial fluw just described for
a plate perpendicular to the approaching flow, where, therefore, flow
dtrection and plate form a right angle. Since In tlds case & vorttces
are in the positions of reflected Images, our investi~tion, is limited to
the formation and the growth of one vortex at one plate edge. We tisi&lize
the plate as suddenly set in motion and then moved uniforml.yat constant
velocity. For a “systemof axes moved with the plate, the velocity at
Wlnlty Is therefore to r~in invariable throughout the flow duration.
Moreover, we asswm the plate to be laterally extended to infinite length
so that we deal with a plane nonstationary flow phenmwmon.

Solution of the probhm Is considerably facilitated by disregard of
the friction. Thl.sis permissible since the friction of most fluids
coming into question is very smell. Thus we take as a “basis en ideal
fluld where, therefore, the viscosity is zero, and require furthernmre
that it be homogeneous and incompressible.“ In this fluld the fluw
described is then to be interpreted a$ a po~tial flow wtth free vor-
tices distributed over a discontinuity surface, a so-called vortex sheet.
The velocity field of such a flow is uniqgely determined by the ve~city
at Infinity end by the form and vortex distribution of this surface.

● A solution for the motion of a fluid about a plate, starting from
‘m the state of rest, has, so far, been achieved only for Infinitely smell

-S of attack. This borderline case has been treated by H. Wsgner
w

*“AusbUdung eines Wlrbels an der Xante elner Pldte, ” G6ttinger
Dissertation, Tngenieur-Archiv, vol. X, 1939, pp. 41L427.
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(ref. 1). Here the free vortices l.lein a“plane vort& skeet which ‘“”
*

extends from the treillng edge. TIE soluti-tiof the ‘flowproblem t?o~-ists- -
_-,

in the calculation of the distribution dens+ty of the discontinuity sur- W
face. Wagner perf.ormedthese calculations for accelerated and for uniform
motion of.the plate. For finite engles of attack, 88 In our case, the
discontinuity surface forms a strongly curved vortex sheet which obviously
is roJled @ into a spira Lvortex. Thus, besides the distribution density,
the shape of the discontinuity surface ebo is unbown.

We nuw make the follcming simplification. At t~~vew beginning of
the motion of the fluid, the magnitude of a”vortex at the plate edge in
proportion to the width of the plate is stilJ very small. Consequently
the vortices at both edges still lAe outside of their mutual interference
domain so that one deals practically tith a,flow abou~a plate of semi-
infinite width. This means a great advanta~e., Since.nQ unit length
existe which would influence the process, the fluw conditions must be
independent of the magnitude of the vortex at the time% The growth of the
vortex therefore consists in a s4mrU.arIncrease of It. In this connection
the treatises of L. Prandtl (ref. 2) and H. ,+den (reti3) must be men-
tioned. Prandtl perfor.meda general investigation concerning the flow

.

around a corner for certain, laws of acceleration.
“-

No solution for the
plate flow resulted frcm the F&andtl formulation; however, one can derive
from it the laws of similitude.

w
In the treatise mntioned, Prandtl sur-

mises that the rolled-~ vortex sheet in its Interior ~y be of the type
of a spiral R = const./& (R and qY signify polar coordinates counted
from the center of the spiral, m is a nunber). Kaden”treats the rol~
up df an unstable discontinuity surface, unilaterally o~ inflmite length,
Into a spiral .Vortex. As we shall see later, Kaden’s problem becomes
identical with ours for the interior of’the yortex. The same laws of
similitude are valid for both cases. The solution for the vortex core

R / /3= Const. qJ2 found by Kaden”appliesj the~f pre, also,to the interior
of our vortex sheet; the above-mentioned pr,edlctlonof F&andtl is thereby
confirmed.

-.
The outer part of the discontinuity surface; thus the transitional

region from the spiral-shaped vortex core to,the plate edge, we procure
with.the aid of graphical methods. The solution obtal~d is then used
for ftiding the flow about the plate of finite width.

2. OUTLINE OF THE METHOD

In this section we shall briefly describe t% m@od by which one
arrives at solution of the problem. We shall start fray the plate of
flnlte width, and shall then treat the plak Qf infinit~idth as a
special case.

“

.-

W
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h the case of the vortex-free potential flow aout the Phte p-d ‘“ .
transversely, the velocity at the edges Is known to become infinitely
large; however, under actual conditims this is never possible. We must ““
therefore demend sbo in this case that the velocity there alw~s has –
finite vslues. We attain this by assuming in the fluid so-ceUed
Helmholtz discontinuity surfaces which extend from the plate edges. ~
this e~ression one understands vortex sheets consisting of free wrtices
and obeying Helmholtz’ lsxm. b contrast to this is the plate, which
also is a discontinuity surface but no longer obeys Hielmholtz’MS. It
forms a rigid surface end exerts, therefo~, pressures on.the flow.

The plane in which the flow takes place will ~ceforth be ‘&signated
as complex z-plane. The system of coordinates is selected so that the
origin of the coordinates coincides with the center of the plate end the
plate lies along an imaginary axis. The width of the plate is mad& equal
to 2b. The movemnt of the plate is to take place frcm the left to ti -
right, or, which means the ssme, the flow is to 8pprOaCh the plate from
the positive side. The constant velocity at infinity - which, with oppo.
site sign, may also be interpreted as speed of the plate traveling in a
fluid at rest - is to be -vm (fig. 1, left). We conformably mm the.-

0? tik trtif Otitioli

v (-)

with the plate, which represents, of course, a piece of tlieimaginary
axis in the z-plane, becoming a piece of the real.axis in tk new plane
(fig. 1, right). The edges z = fib shift into the.zero point ~ = O;
the point at z = O transforms to the points ~b on the real (-axis.
Furthermore, in this transformation the region at infinity in the z-plane
goes over, without chsnge, into that at infinity in the ~-plane. There-
fore the velocities at infinity in both planes are eqpal, thus
V(2 = m) = V(C = m) = -Vm. As imeges of the discontinuity surfaces we

.-—

obtain in the “newplane again imsges which start from the point ~ = O.
The new vortex sheets lie s-tricddy to the real sxis whereby the”
latter becmes a streamline so that the image of the plate sJso remains
a stresmlinel. The flow in the ~-plane corresponding to the plate f-
is composed of the parallel flow end a flaw caused by the free voFtic&s” .“ -
of the discontinuity surfaces. We are nuw going to calculate its
velocity field.

lFor the case where the vortex kheets in t~ z-plane no longer
lie symmetrical to tb red -s”, one m~t choose titead of (1) the -
transformation into a circle since the real axis in the (-plane then is”

. no longer a streamline. For our case the selected transformation is
preferable to that i@o the circle becsnse the graphical.calculations
become considerably Simpler.

“d
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8
We denote by ~F a variable point of the vortex sheet @ the upper

half plane and coordinate to it a circulation all’.The corresponding vortex ~

point of the mirrored surface Is then given by ~F and has the same

vortex strength, but with opposite sign, thus -dr. Roth vortex points
produce at en srbitrez’ypoint ~ of the plenq a vebcity the ccn$~ate
complex value of which is given by

(

dvl(~) = +* -“

“c % )

If one puts d r = 7(CF)dEF wherein 7(LF) represents the &l.stribu- .

tion de~ity at a point” ~FJ - d% a line element of the surface, one

obtains by integration over all points of the surfaces the velocity
..

induced by them
. , .

($
flow
flow

from
that

signifies the terminal point of the vortex sheet.) The parallel

v

—..—

the velocity -vm. For the total.velocity of the superi.npsed
mey nuw write . .-

(2)

Between the velocities of both planes

..~-$,,-

there exists the relationship

(3)

which one obtains the vekcities for the z-plsne. The candition
the veloclt~ should assume finite values at the plate edges remains

to be satisfied.- As one can.see very quickly, this requirem& is ful-
filled when the expression (2) for ~ = O disa~ears, because the ms&ni-
fication ratio d~/dz becomss infinite for ~ = O or z = ~ib. One
obtsins therewith the condition2

%!he part sten?uingfrom vl(~) becomes ‘realfor { = O.
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which mzst alw~s be satisfied. It is, however, not sufficient for deter-
mination of distribution density end shape of the discontinuity surface.

As long sa the vortices are still very small.compared to the plate,
the plate may be ?.%gardedas infinitely wide in compsrtson with the vor-
tices. For this case, the lack of a fixed comparatim length is the
resson that the form of the disconthuity surface is independent of the
_it* of the vortex configuration. The @evelopmegt of the discon-
tinuity surface consists, therefore, initialdy in a similsr msgnification.
This similar magnification can be @JEiUed only in the c~e of a certsln
shspe of the discontinuity surface, and of a certain distribution of the -
vortices over it. On the basis of thts condition, we can therefore cal-
culate the form and vortex distribution for the be@Ming of the motion.
Starting from this initial condition we can then find, by further obser-
vation of the v-ation with tim of the change in form, alEo the shapes
and vortex distributions for the later times when the vortices sre no
longer small conpared to the width of the plate. —

Before performing the 13miting process to the plate of infinite
width, we choose a new system of coordinates z‘ which arises from the .-”
former coordinate system by parsUel displacement, end the zero point of
which is shifted to the upper edge (z = +ib). We write

z = Z’ + ib

and replace, in addition, z‘ by

(5)

(6)

where H represents a scale unit. Accordingly, equation (1) assumes
the form

The limiting process from the plate of finite
. tidth (b ~ =) yields a new trmf o~tion

* C=i==orz=-i

—

(7)

width to that of infinite

C2
Z!E

(8) -
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This is the transformation“of
imsginszy axis onto the upper

the plane with a slit eJ&g
half plsne.of the ~-plane.

g-plane v. continues denoting the free-str&m velocity,

tation of vm aa tr”avellngor, respectively,”free-stream

“NACATM 1398

the negative
If In the
the interpre-

Veloclty, is

lost in the Z-plane since in this-plane the veloci~ at infinity
tends ~ O. The quantl~ v. appe~s in this plane as the velocity

which prevails in the case of vortex-free flow a+ tl& @int Z =- ~
.-—.

iH.
.-

JIU other considerations carried out son-farconcerning‘theplate of
finite width ~ be directJy transferred to the plate of infinite width.

3. THEIII?IM- WIDE PIATE

(a) Laws of Similitude

w the limlting-process from a finitely .yideto u- infinitely
plate which was just completed, a flow type was obtained for which

wide
the

successive flow patterns are similar and, aqc6rdlngJy, the circulation -
of the vortex and the distribution density on the vortex sheet are
slmllsrly enlarged for this growth. We shti lmiefly derive here the
laws which characterize this behavior. (As was remarked in the
Introduction, the laws of similitude could be.“immediatelyderived from

.

w

.-

the quoted treatise of Pr~dtl. )
—

We observe the distance Z of two points”remaining”,in similar
position during the similar enlargement of the discontir-titysurface
assuu it to be at the tiaw tl of the amount 21 and at the time

of the emmnt 22. We state as the time law for the &largement

21 ()Iq ~ (9)
q=~-

-.
where A is a nuniberyet to be determined. ~_e law for~he circulation
r about similarly situated regions may be obtsined aa follows. Since
the free-streem velocity in the ~-plsne is invariably v., the same veloc-

ity must prevail also for the similar enlargenisntat similarly located
pointss. This veloci~ is composed of the free-stresm ve~city v. and

of the fields of the individual vortex elements. The influence of a

‘In the Z-plane this is not the case, since here (far vortex-free ●—
flow) the velocity is constant at the paint Z”=- ~ iH which is fixed

during the similar enlar~nt, thus does not remain in s-~ar position.
w
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vortex element

the mlocity is

AI’/Z~,due to the constsnt velocity, also nust be constant. For the

M, at the distsnce z~

Ar/&zg. If during the

7

from the point_considered, on

growth AI’ ad 21 sre mdified,

circulation I’ shout similarly situated regions of the &plene, therefore,

‘1 z(1
~“~

2

iS valid. b the Z-plene the corresponding

21 _

()

zc1
2

22 ~
2

Thus h becomss in the z-plane
r2

,tistencesare

(lo)

If we designate by V the velocities which correspond to the law of
similitude, we obtain for the nlocity V(Z) in the Z-plane which is pro-
portional to r/2

-=*”J%=(W2 ‘:)
v=

VP

If we replace in the rattos above the t- tl by the tires 1 end the.—
time t2 by the time t, the ~WS of simi~tude read —

(~) . . .
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whereti the number h

Since

to t-~iz,

we form the

NACATM 1398

remains to be determined. For .cekulation of the
velocity of growth of the dlstence 2

this VelOCity,

there results

az— = ZIA+l
dt

Mm all velocities, must vary

h- l=-;

proportionddy

thus .

Therewith the laws of similitude read

-1/31/3 v = Vlt-1= z~t2/3 r=rlt .._ (u)

(b) Solution for the Vortex Core
I

I
Our tack now consists in finding a shwe for the .@?ir~ ~ch satisfies _

these laws. They are the s- laws Kaden (ref. 3) obtained sa a result.
Thus one deals hei%, too, wtth a slmiler problem. In Z@rticular, both prob-
lems becouw identical for the ‘innerpart of the vo@ex where in both cases
a discontinuity surface consisting of free vortices is to be rolled up into ‘-
a spiral vortex. It is therefore sufficient.if we re~er to Kaden’s paper - -
and here only briefly mention the results.

Let R and T be paler coordinates of a system of coordinates the
zero point of which coincides with the center of the ajiral. For fo~ and
circulation I’ of the vortex ctie bounded by a circle of”the radius R,
Ksden obtained .-

8

xt 2/3
k) fR=— , r=2XR (J+)

I
1

.

I

-. . . I
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L
The circumferential velocity, for rsdius R is

*

Zherefn t is the tire, counted from the
qusntity X is a constant, still unknown
dimension veloci~ times square root of a
duce for it the dimensionless constant

(c) Solution

As was shown before,

9

..

(15)

beginning of the motion. The
for the time being. It has the

.

-h= - ~ ~ SL60 intro.

(16)

for the Outer Imps of the Spiral ..-—

the behavior of the spiral is characterized in

()~ 2/3
the interior, that is, for large angles ~, by R = ~ . For small

angles ~, in contrast, especially where the discontinuity surface
adjoins the edge, considerable deviations from this form occur. This
transitional region can be found as follows. We visualize the plake as

....---—...._—

lying psmJJ..elto the straight line w = o; -likLSassumption is insignifi-
cant for practical purposes since the spirsd.tidings qproach, in the
inwsrd direction, a circular form. We isolatej furttirmore, at ona point --
the inner part of the spiral, in which the form is prescribed with.suffl-

()

xt 2/3
cient accuracy by R = — . For calculation of the velociw field

fig
outside of the spiral core, we visuelize the latter as replaced by en
isolated vortex at the center of gratity of the cir~tion., This is _
directly permissible stice almost circulsr s-try prevtils in the
interior of the spiral. The dis-try caused by the separation point
brings it about that the center of gratity of the circ~tion does not
coincide with the center of the spirsl. For the &lculatio~ “-~c&t6d–

...——

later on, the separation point is ~laced at the point 9 = 2.5m. ~”
.-.—

difference between the coordinates of the spirsl center (a, h) end of the
center of gravity (~, hi) msy be calculated, similarly as by K6den, --
(ref. 3) to be approximately ..——.
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%! -a= 0.006 q

if ~ is the radius of the core

end hi-h= O.on q

of the Sp%?al. _

NACA!CM1398

(17)

The outer loop which we now want to c~culate, efiends from the
separation point (q = 2.5d”)to the plate edge (q = @). Its shape end
vortex distribution Y as well as the position snd cticulathn ri of

the vortex core we assunE, at first, arbitr=ily,
tude x conmmn to both q-tities aud at p~sent
(equati~ (Q) and (15)), and make therewith the
g-plane. Therein y is transformed into

Y

“

with a factor of shKU&
not ‘yet determined,

.

trszisitioninto the.
-. -.

whereas the circulation ri remains unchanged. rn this mapping plans

(L-plu ) the velocities stemming from the vortex mqy be calculated as
the fieJd of the vortex core and the distribution on tb outer winding,
likewise their.mirrored images. By super~osition of.the undisturbed
velocity Vm there results the velocity field v‘ in the ~-plane.

First, one ascertains the velocity at the pdnt
!

0. From the condi-
tion that this velocity must be zero (equation (4 )=results factor X,
still undetermined at ffist, for the circulation 1“~. hnd the distrlbu:—
%icnldensi%y y.

b the conformal mapping onto the Z-plane the velocities v‘ of
the (-plane are transfommd inta the velocities v of–the Z-plane,
according to the relationship — —

d~
+,=+1—

dz”

.

b

where 7 and t’ signify the conjugate vUues of the velocities. The
velocity of the individual”vortex concentra@d” at the ‘core is obtained

.—

by omission of the fIeld of this vortex. It must, however, be noted
that in the transition from the ~-plane to the Z-plane_ti field Of Ws
vortex is defoti; hence an additions tefi-appears in the conversion
of the velocities. In the ~-plane the pote~tial of t~- core vortex to be
emitted iS

9.

u
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In the Z-plane the potential of the vortex to be omitted is

In order to calculate the velocity for the Z-plane we must,
subtract, besides the potential OK(~), also the additional
.a+ +go) to which correspimds a veloclty
ai

.

t ‘addithlsl
r,

in the ~-plane or, respectively,

1“1— 3
‘additional = ()2atlc+Lodz-

in the z-plane.

therefore,
potential

.—

(18)

.-

Once one has calculated the velocities for individual points of the
discontinuity surface one resolves them, most advantageously, into normal ‘-
and tangentti velocities Vn and vt, end plots the latter as functions

Of the arC length S. By cmnbination of thk function -US one obtains
the velocities pertaining to each point of the vortex sheet; frcm them
results the motion of the assunwd vortex sheet. ______

A fluid particle at the point P of the spiral,hating the velocity ‘-
v (fIg. 2) moves by the distance PP1 = v intheunlt time. DUe to the ““

-----.._

.
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—.

similsr enlargement, the point P is trqqf&d during this t- into
a“

the similerJy located point P2.
.

---- m—

The velocity at which the similarly situated points are displaced
is essumd to be V so that the @istence Is PP2 =,V. To hswe P1

com to lie “onthe similarly enlerged spiral, the normal components

‘n and Vn of the two velocities v end V must be equal.or

(u)

“We observe the point P on its path to the similar~ situated
point P2 end fInd that this path does not represent the motion of a
fluid perticle. Rather, the fluid flows, with the velocity v - V,
through the point nmting from P to P2.

●

If vT and VT signify the tangential components of the VeLOCitie8

v end V, the circulation in flowing with the fluld ln@, the core Inside
●

of P or P2j respectinly, during the t- At is

Ar = (vT - VT)7At

— ..

Hence there results for the
enlarged

region inside of P, which is being similarly

According to the lsws of si.milltude(U), one must have for a region -
being similar~ enlerged

.-

The two values of dr/dt must agree in order to have the similitude
satisfied, therefore the equation

...

...1.
“,-,.. 9

,.
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Imlst apply. Since the distribution densi~ is

ar

y “-s

also

‘Z=-$$+v’)i-$=o

13

(26)

..-

(21)

With the aid of the equations (19) and (21.)it h now possible to find
the shape end vortex distribution of the outer loop. -.

We shall perform the calculation of these quantities for a time t

(20)4

for which tbs equation (lh) of the splrsl core assms the simplified
fOrm

We select as
and place it as a

--

R.+ (d+

/the f.nitial form fOr the entire sp~r~ the fo~ R . H &/3
first try so that it 4oins the plate at the point

q = 6* = Ye/2(fig. 3). The break originated at & edge is me~elv a flow
which, as one readlQ understands, disappears at the n& _nt.- Except
for the factor X, the circulation

rr.2xR (22)

4The duplication of the equation nunibers20 and 21 folhws that of
the original Germsdn do-nt.
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is known to us. For the core which we shsdl assure to–”beginat Q = 2.fi, =
we have

.

q?hus I’i becomes

The distribution density is

R=
Ri”* .

I

ri = 2x

i

H

(2.~)2/3
(23)

h figure 4 this distribution density y- Is plotted as a function
of the arc length s. me confonmal mapping C8), in ctiination with the
reflection at the E-sxis, leads to the double”spiral.indicated in figure 5.
The distrlbutim density in th.lsplane (Image plane) is represented in
figure 6. When we c~culate the velocity at the zero paint, we obttin,
on the basis of eqpation (4), a condition for the sttll undetermined
value x. There results

..

As sn exsmple for the determination of t~ velocity field we shall
here briefly reproduce the calculation of the velocity at the center of
gravity. In the &plane en element of the discontinuity surface de’
induces at the center of gjmvity the velocity c~onents

y(s’)
dvg ‘ = ~ sin”~ ds’,

y(s’)

1
dvql’ = ~ COS ~ dS‘

e s

. .

—

.

.
9

.

.

-.
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when R8’ denotes the distance of the

end w the anKLe of the radius vector#-- .

element from the center of

from the center of,grtity

15
.

grti~
to the

elemsnt with the Fj-exis(fi
?
. 5j. ~ ~tegration over s” from the zero

point to the core boundm?y q = 2.53c,s = 2.62 H) end over the corre-

sponding curve (E’) of the image one obtains v~=’
- Vnl’= = ‘ig-

ure 7 the values dv~~
/
‘ de’ - ‘Vnl /

‘ de’ era plotted against 6‘ or--
-1s, respective~. The quantities vgl’

- ‘nl ‘
ara obtained by cir-

cumscribing, with the aid of a p~ter, the cross-hatched sxess -
—

bounded by the curves end the ebscissa axis

These values
The image of

represent the influence of the outer loop of the spiral.
the vortex core causes the velocities

ri

%2’ = &~l = 00=” %2 ‘=0
.. —..._

if h’ signifies the distance of the center of grati~ of the core from
the g-exis. The mn-tex core itself does not contribute to the velocity
of its own center of gravity In the tj-plane. However, it must be noted
that, according to the ~lanatione on pp. 10 and U, in the conversion
to the Z-plane a tam stenmrlngfrom the vortex core . .

v@’ = O.1.1Vm ‘n3 ‘ = O.11 v=

appesrs.

For the resultant veloci@ one obtains

%’ =
- v’ + Vgl + VE2 + %3 G .o.40vm

v~ ‘
= ‘T~ + ‘T2 + ’73, = O.uvm

.

.—

—

.

.-
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whence there results, by conversion to the Z-plane,

According to the law of sindlitude,

Vx = - o.37vm

would have to be valid. The center of

- o.2gvm

- O.l’jwm

.—.
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‘Y=o

—
~aviw thus shows for the

.

.,--

assumptions made, relatively to its req~red ~tion, a “wong motion
obliquely downward, toward the p_late,with the velocity components b

—

In the same manner the velocities for the points of the outer winding are
calculated. Of course, one hee to add a term which represents the tnflu-
ence of the core; on the other hand, the additional term V3 does not .
appear here. We find the calculated normal end tsngenti”~ components
plotted in figures 8a end 8C. As csn be seen from figures 8b and &l,
equations (19) and (21) are not satisfied. In other words, the shape and
vortex distribution assumed deviate from the &–tual.solution. We now
modifjrthe position of the core c .g. in the sense of Avx and AVV and

the shape end vortex distribution of..the outer loop in tie sense o; the

differences Avn end A ~. The form of the spiral core””remains

(’)
—.~2/3 .--H

Unchangedly R . — —. We now repeat the calculation procedure
m ~3/2

.

.

1
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carried out so far. l&ter several steps, the first two of which are
represented in figures 9 to 12, one srrives finsJJy at a solution that
satisfies the laws of stilitude; it is plotted in figure 13. -

h figure M is the radius of the spirsl; in figure 15 its distri-
bution density is plotted aa functions of the center de and of the
arc length s, respectively. .

I?or more convenient further use, the most important constants
necesssz-yfor characterization of
compiled below. For the so~tion
calculation yields the time

t =

.th&spiral vort-- have been briefJy
indicated in figures 13 to 15, the

1.42 #
m

the constant

x = 2.22@vm k = 2.22

the coordinates of the splrel center

a = -O .53H h = -o.=

the total circulation of the spiral vortex

r =“4.2oHvm

For the assumed core buundary at q = 2.3t the radius of the core
is

q = 0.267H

..:

..

.

.

the circulation of the core

ri = 2.31Wm
.
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For an arbitra& time t one obtains
. w_.=

-0.4Ht2/3 h =--0.165Ht2/3
*

~.

r = 3.~m,~/3

Ri

‘i =

4. THE

With the solution found

= o.2&/3 = 0.58

f
2Hvmt1/3 = 3.15 a --

.

PIATECU? FINITE WIDTH

.-—
for the plate of infinite ~dth, we knuw

the initial flow conditions about aplate of-finiti wid%h, wher& the
vortices are still small compsred to the pla@ width. We know that for ““ -
this initial state the successive vortex images originate from one
another by similar enlsrgem?nt. “However, as soon aa the vortices aasume
a magnitude which is no longer negligible compared to the plate width,
the presupposition for a similar growth no longer holds true. Yet,
starting fram the form and distribution density we found for the sti~
very smaU vortices, we csn calculate the”variation of this form and -”

ay [21]distribution density, using the values of Avn 119] and A ~

which now, with growing vortices, nmre’and more detiate ..#?muO. We only
must make use of the transformation by mesns of (1) instead of the trsns-
formation byuans of (8). If we stat frbm a known forg and distribu-
tion density at a time tl, we obt~ the dev:ation of the form and dis-

tribution density from those which would =s~t for s~-lar enlargement
according “to the:time laws (U),

[

tz
All= Avndt

1

at the time *2

J

tz
Ud@=

tl

aa being

A~dt

,.. .
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plane I the=-

.

The graphical determination of the reqylred quantities is greatly
-red by the fact -t the VOfiiUS are at the begI& very S-
and later very large. We can avoid this difficulty by visualizing the
figure, at every instant, enlarged or reduced in such a manner that the
vortex would alwqw remain the s- If i.twould keep on growing according
to the laws of similitude that are valid for the beginning. The fLgure
in actual size we denote as figure I and the quantities valid for it by
the subscript 1, the enlarged figure se figure II and the corresponding
quantities by the subscript II. At the imltial stage, the enlarged vor-
tex Is to agree precisely with the one calcula&d for the plate of
Infinite wtdth In the precedhg section. Iet us csU the ratio of mag-
nification in every case e. H we reduce in the magnif$ed figure a . .
velocities simultaneously at suitable points in the proportion l/~,

the circulations r are msgnified in the proportion ~. The distrlbu- -‘-”

tion densities y are reduced in the proportion l/@
-_.._

For the potential flow shout the plate of the width 2b in the

For the plate
velocity was

wherein y‘ =

results in the neighborhood of the edge the velocity

of Infinite length treated in

b - y signifies the distance
h order to obtain for %e beginning of the
as for the flow dbout the pla~ of
select the width of the plate 2b

b

For the above stipulation, exactly

infildte

—

(25)

section 3 the corresponding
..—-.

.— .-. .

.(*)...

from the edge of the plate.
nmtion the same co~t ions
width treated before, W&

in such a msmner that

=H

the velocity V. prevails in the

-f ied figure, while ~ is still very large, at a point at a distance
of b/2 from the edge. ti the case of the plate of infinite ,length
treated before, this point lay at a distance 1#2 from the e-• Since
we equated b = H, we obtdn in the magnified figure precisely the flow
treated in section 3.



20

According to
plate of infinite

~W ~ 1398

equati~ (lk ), for the gruwing vortex core of the
width

()
~t 2/3

R=Z

Since at the initial stage the flow about

finite width 2b = 2H coincides tith the
the edge of & plate of the ~
flow ebout - edge of the

plate of infinite width, thl~ formula appUes. slso to the &Ltiel stsge
in the case of a plate of findte width. By means of the magnification
by the factor .s,this initial.vortex”is to be trensfo-d Into the flow

treated for which R =
+

b Thus necessarily
& 3 = @’“

Hence there results

Since in the plane 1, at the

‘I ~m> according to (13),

“they appesr megnified in the

.

E
~ + 2~3bt-2/3() (2’7)

beginning of the motion, the circulations .

with t’/3, we obtain in the plane II, where

proportion W, constent circulations @
constant distribution densities.

. .. . —

At the beginning of the motion e = m. The plate edges lie in the
plene II at en infinite dist~ce from one snot-herso that we actualJy
have the case of the plate of Infinite width. In time, @wever, e
attains smeUer finite values, end we obtain in the plsne II elso a plate
of finite width. Therewith the mlocities beccm different, and we
obtain deviations from the similar meguification. In order to calculate
the velocities in the plane II, we transfory this z~p@ne onto a

~-plene which we shsU characterize by the”“&i~scriptIfi~ by insaneof the
function ... ~ --- . “- ““””-”” - ‘“

r

2 + (eb)2
~111= * ~ . (28).-

.

.
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t For very lerge s this mapping is transfo=d into the infinite plate
according to (8) in the neighborhood of the e&e. For finite e,
however, other shapes result for the mapped vortices, and that is “the ““-

- - very reason which causes the modifications of the velocities and there-
with the deviations frau similar vortex growth.

As soon as, due to this deviation, the form and distribution density
of the vortices have changed with respect to the similar growth, this
also contributes to the variation of the velocities. Since, how&ieirj‘“”—
form and distribution density change, at first, only very slowly coi@&red -
to the similar growth, one may in the plane II assume the form and distri-
bution density as constant in turn through a large time interval., and
need consider in this time interval only the modification of the trans-
formation in the plane 111, due to the modificatIon of the value e.

For such a.time interval tl to t2 (the first starts with t = O),

one calculates for sevetil intermediate times the normal and tangerrtial
Ccmlponents

‘nII
and Vt

II
of the velocities o? the plane II with the

. aid of the transformation onto the plane III in the ssme manner as”~ the -
case of the plate of infinite lengbh. One forms furth&more” the ~_fer-
ences with respect to the velocities of the similar ma@if icat”ion”““TnII

—.—

*
and Vt-.T and obtains then by transfer to the plane I the values (19)

and corresponding

aYI

‘x

to (21)

‘-$[(+,,)y~ ‘:

-.

(29)

.-

If we, finally, replace in the last term t by (b/~)3/2 YC/)((equation , -
(27)), w obtti

.

.

(30)
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By”graphical integration then results the displacemen~ b of the points
8

of the vortex sheet at right angles to it, and the rnd~iftbationof the
.-

distributlon density campared to the slmll~ magnification in the . w
plane I as

AY1

and the modification of fom
as

Therein e2 is the value of

=~,’2A@dt

and distribution

A~I = %@ ‘I .

Ayll = ~ Ay=

r ‘2

the magnificatl~

t

(3+)

(32)

— ..-
~ensity~nthe plane II .- , ,_ .._..–—.

.

(34)

ratio ~ at the time t2.

Due t~ tti finite magnitude of the vortices cox&&d with the plate

~YII
~l+Oand Awwidth, AV + O; also, the contitlon_,(k),

that in the {-plane at the zero point the velocity mus~be zero, will
no longer be satisfied. In the ascertainment of the ti_rtexfor the plate
of infinite width we have been able to fulfill this con&.ti.onby s@table .
definition of an as yet undetermined factor for the circuktion. Due
to this condition we found the quantity X or k, respectively. For
the further.development of the vortex, form and vortex strength and
theti variation with time are fixed. Onl#””thestrength~of the vortices -
shed at the plate edge is still undetermined-since we cm here not f’orm .
the differentLal quotient aih occurring in (30). We must select it
in such a manner that equation (4) is satisfied. We ob~ain therefore an
additional modification of the distribution density qtarthg from the

.
.

plate edge which gradually Is ctiried into””th&vortex by the flow. It

.

.
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is true that it was shown In the quantitative calculation
tfons from the condition (4) are extremly smalJ, because
of the conformal representation r(l)] with e results in

23

that the devia-
the variation
a positive

velocity, whereas the modiflcati6n o? the form and distribution density
.

according to (33) and (~) results In a negative velocity at the
point g = O and the two almost capcel one another. J-

The calculation was carried out for the intervah E = m to E= 3,’
E.3toe=2,end.E =2-I X) E=l. The results =e compiled in the
figures 16 to 19. True to expectation, the circulation r increases
more slowly with time then it does according to the solution for the
plate of tii.nite width (initial state, flg. 19). In the finhl state it
would perhaps approach a constant value which corresponds to a steady
state of flow. However, according to ~=ience the symmetrical mrtex
configuration becomes umtable from a certain msgnl.tudeonward, so that
this steady state is not attained.

5. sUOllW’Y

The flow about the plate of infinite wtdth may be represented as a
potential flow tith discontinuity surfaces which extend from tba plate
e@es. For prescribed form and _ distribution”of the”discontinuity
surfaces, the velocity field may be calculated by means of a conformal -““
representation. One condition Is that the mloclty at the plate edges
must be fkite. However, it is not sufficient for determination of the””” - -
form end vnrtex distribution of the surface. Hbwever, on the basis of
a shilitude requirement one succeeds in finding a solution of this
problem for the plate of @finite width which is correct for the vkry -
begjbninn of the motion of the fluid.

—.-
StUting from-this solution,”the ~~

further develqment of the vortex distrlbtilon and shape of the surface
sre observed in the caae of a plate of finite width.

Finally, I should like to express rLW
Frofessor Betz for hls suggestion of this
support in Csrrylng it out.

Translated by Mary L. Mahler
Natlonsl Advisory Conmdttee
for Aeronautics

-—-—

special gratitude to
tivestlgation end his active.. .—

.
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d z-Plane
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Figure l.- Platewithvortexsheetsstartx from theedges (left),and
conformsl representationoftheflow (righk).

Figure 2.- Actualvelocity v of a fluid psrtlcle and displacement velo -
city V correspo@ng to the slmilsr msgnificatiom

....

Figure3.- Spirslaccordingtotheequation R = H/q2/3.
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Figure4.- Distribution density for the region %/2 = q = 2.5’T Pert-
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Figure 5.- The Spiralsnd itsimage in tk! ~plane.
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Figure 6.- Dlstrlbution density 7(s’) of the spirsl in the g-plane.
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Figure 7.- Influenceoftk distributionon tk velocitycompone
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Figure 8.- The quantities which are decisive for& vsriationofform
and distribution density for tk initial spirsl.
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-x

Figure 9.- Firstcorrectionoftb form.
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Figure 10.- Distributiondensitysnd decisivequantitiessfterthefirst
, correcti~
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Figure 11.- Second correction of the form.
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Figure 12.- Distributiondensityand decisivequantitiesafter the
second correction.

,



H NAc!ATM 1398

.

-7-

Y

P[ate

33

1
--

x

H

Figure 13.- Fhal form ofthespirslfortk pl@e ofinfinitewidth
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Figure14.- Relation bhveen the radius R and the sngle ~ for the
final form and for the initial splrsl .- .... .
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Figure 15.- FM distribution density in& case of the plate of
W?Inite width.
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Plate

- 16=-Varhtion of tk form of the spiral with time in the case at
tM plate of finite width (reduced to constant vortex magnitude).

-z-Plane

-v=- ——— —— —. .—— —

Figuxe 17.- Variation of tk fmm of tk spirsl with time in tk case of
the plate of finite width (actual scale).
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Figure 18.- Variationoftk distributiondensitywithtime.
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Figure 19.- Growth of the circulation with time.
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